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-
Logistics

These lectures are being recorded.

e Fridays at 10:00-11:00 over Zoom

e Zoom link will be sent a day before

e Link to the recording on Edinburgh Media Hopper

e Email me any questions, happy to discuss!



L
Outcomes of the course

e Be able to find and follow papers that have developed causal techniques
e Understand which area of causal analysis the papers apply to
e Be able to apply causal techniques to a particular problem of interest

e Use causal analysis packages in R and Python (Microsoft DoWhy,
CausalGraphicalModels)

e Be able to modify a current technique in such a way that applies to a
particular problem of interest

e A foundation to start developing techniques in causal inference and
causal discovery
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e
Making the biomedical question concrete

Interested to answer specific biomedical questions:

1) Understanding natural biological phenomena
2) Ultimately to improve health: Prevention and cure

Patient: Info on DNA variants and biomarkers, traits/disease, confounders
Clinician: What drug, what dose, when, how often, ...
“Control”, “effect of”, “why did”, “intervention”, “what if”, ...

Causality language
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Causality language

Blood
pressure

Consider all variables affecting the system of interest
and the role each play (as far as possible)

Blood pressure is a mediator here: @

What happens when there are lot of variables?




N
Biological Motivation I: Personalised Medicine

e Patient diagnosed with a particular disease

e Certain baseline covariates are known, e.g. age, weight, BMI,
blood sugar, ...

e Question: Should treatment A or treatment B be given
- What is the causal effect of Avs B
- Design a policy: Features —> {A,B}
- I.e. best treatment for a given individual

e Source: Electronic Health Records
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Causal Estimation of Effects vs Causal Discovery

e How much would some variables (features or labels)
change if we manipulate the value of another variable?
- Have a prior causal knowledge (may be incomplete)
- Wish to estimate degrees of causal dependencies

e By modifying the value of which variables could we
change the value of another variable?
- Wish to discover the causal graph
- Apply causal inference



L
Conventions

e Variable to be manipulated: treatment (T), e.g. drug

e Variable we observe as response: outcome (Y), e.g. success/
failure of drug

e Other observable variables that can affect treatment and outcome
causally and we wish to correct for: confounders (X), e.g. age,
gender, ...

e Unobservable confounder (U)



O
Causal Estimation of Effects

e Have a prior causal knowledge (may be incomplete) and know
the treatment/outcome pair, c.e., weight gain, hours online

¢ Interested in estimating the effect size:

D [ytzl(x) — yt:()(a:)} = / (y1 () — yo($))p($)d$

Note: The features/confounders x for both treatment and
control groups are drawn from the same distribution p(x)

e Goal: Find an unbiased estimator, e.g. signal/noise ratio



.
Randomised experiments: Already in causal framework

e |[n a randomised experiment, p(x) is designed to be the
same for both treatment groups (=0 or t=1), typically uniform

e Paired ‘clones’ in treatment and outcome groups

e Simply take the difference of the averages:

A

N
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e Statistical test: e.g. T-test and p-values ...
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-
Observational data: What goes wrong?

p(z|t = 1) # p(z|t = 0)

A
Control treatment

Age

(/ y1(z)p(zft = 1)dz — /yo(ﬂf)p(l’\t = O)dSU) # / (y1(x) — yo(z))p(x)d



e
Observational data: Stratification

e Measure outcome (success/failure), within each of the young/old
groups separately

e Take weighted average by the probability of being young/old
E(Healed|t = 1) = E(Healed|t = 1, young)p(young) + E(Healed|t = 1, old)p(old)

e Disadvantages:
- All possible confounders need to be observed
- Assumes overlap between the two distributions (if there is no overlap, sample is

not representative, e.g. performing the experiment only for old people )
- Bad estimates as confounder dimensionality increases

Age1 Age2 Age3 Age4
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N
Two main Frameworks for causal estimation/discovery

e Potential outcomes (Rubin):

- Requires a given treatment-outcome pair (known directionality)
- Mainly applies to causal estimation (learning effects)
- More familiar to biologists

e Structural causal models (Pearl):
- Causal graph

- Structural equations
- Algorithmic: Causal Discovery

Extend the language

f bability th :
L = faz(ex)a t = ft(mv 6t)? Y = fy(aj’t’ Gy) i 32—2;;2/1;::)/

Assumption: Independent noise terms: € A€ AL €y
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e Definition: Given treatment, t, and outcome, y, the potential outcome
of instance/individual (i) is denoted by yi() is the value y would have
taken if individual (i) had been under treatment t.



e
Potential Outcomes Framework (Rubin)

e Definition: Given treatment, t, and outcome, y, the potential outcome
of instance/individual (i) is denoted by yi() is the value y would have
taken if individual (i) had been under treatment t.

e yo)and y1() are not observed, but potential outcomes
e t()is the observed treatment applied to individual (i), O or 1
e Observed outcomes: yo() OR y1() depend on treatment (fundamental

problem of causal inference):

ygé)s — t(z)ygz) + (1 - t(’b))y(()z)
e Individual treatment effect: () = (") _ /("

e Average treatment effect:



.
Potential Outcomes Assumptions (Rubin)

e SUTVA: Stable Unit Treatment Value Assumption

- Well-defined treatment (no different versions)

- No interference: Different individuals (units) within a
population do not influence each other (e.g. does not
work in social behavioural studies, care must be taken for
time series data when defining the units)

e Consistency: The observed outcome is independent of how the
treatment is assigned

e Unconfoundedness (exchangeability)
e Positivity (strong ignorability)



e
Potential Outcomes Framework (Rubin)

¢ Unconfoundedness: Treatment assignment is random, given X:
yi” g ALt | o

e given X, there is no preference for individual (i) to get assigned the
treatment as compared to individual (j) (i.e. randomised)

e e.g., restricting to the old group, person A has the same probability of
receiving the treatment as person B

e There may be difference in power: p(t = 1|z) not necessarily = p(t = 0|z)

e However, if we do not restrict to the old group, there is a clear preference:
older individuals are more likely to receive the drug

e No unobserved confounders (see later: unverifiable in observational data)

e Positivity (Strong ignorability): Every individual has a non-zero chance of
receiving the treatment/control:

p(t=1|z) € (0,1) if P(x) >0
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