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Last time: Observational data, what goes wrong?
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Simpson’s Paradox
e Why concluding causality from purely associational measures, i.e.

correlation, can be very wrong (not just neutral): “It would have better
not to make any statements!”
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Potential Outcomes Assumptions (Rubin)

e Consistency: The observed outcome is independent of how the
treatment is assigned

e Unconfoundedness: Treatment assignment is random, given
covariants X

e Positivity: Every individual has a non-zero chance of receiving
the treatment/control p(t = 1|x) € (0,1) if P(z) > 0

Average treatment effect:
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Overview of the course

e Estimating causal effects
e Randomised trial vs observational data

Causal Inference

Causal Effect Estimation Casual Discovery
Obsv confounders Unobsv confounders _
Constraint- Score- FCM
based based
Regression | |Propensity Front-
Adjustment score v door
: criterion Modern ML

Rubin Rubin, Pearl




Causal inference with observed
confounders



Regression Adjustment
e X is a sufficient set of confounders if conditioning on X, there would
be no confounding bias

e For individual (i) there is only one observed outcome: y( )

e Would like to estimate (infer) counterfactual: ;" — g [y<z>|1 ¢ x(vs)]

e Using a design matrix, fitt Y = Bx X + 87T + ¢
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e Assumptions: Overlap and additivity
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ML aside: Improving estimate via ensemble learning

e Do we need the additivity assumption?
¢ |n fact, ignoring covariate-treatment interaction can be a source of bias
e Data driven approach:

Eo (YT, X) = B0 + Bx X + 7T +~XT
Eo (Y|T,X) = Bo+ BxX + BrT +vXT + By X?
Eo (Y|T,X) = Bo+ BxX + BrT + vXT + BxX* + /' X°T

e \/-fold cross-validation using an ensemble learning, e.g. super-learner
e Appropriate choice of loss function, e.g., L1 for conditional median,
L2 for conditional mean, log loss for binary outcome, ...



e
Discrete Super Learner

1. Input data 2. Split data 3. Fiteachof the 3 4. Predict the estimated probabilities of
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Eric Polley, Mark van der Laan, Sherri Rose 2011
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Matching

Idea: Blind ourselves to the outcomes, try to get as similar to a randomised
experiment as possible (‘correct for confounding’)

Reveals lack of overlap in treatment vs control distributions: individuals in the
treatment group that have no chance of having an ‘equivalent’ in control group,
le, parts of the distribution with:

p(t=1lz) =0, p(t=0|z) =0

Mahalanobis distance: Difference scaled by variance

D, 2@y = /(20 — 20))T §-1 (20 — 20)), § = Cov(X)

Issues: Outliers. Use a calliper: maximum acceptable distance, to avoid violating
the positivity (strong ignorability) assumption. But the populations becomes
harder to define.

See papers on anomaly detection: When in fact, we are interested in the outliers



Propensity Score

¢ |n a randomised trial: p(t=1Ix)=p(t=1)=0.5

e |In an observational study, p(t=1Ix) can be estimated, since it
involves observational data at a t and x (hence identifiable).

e A balancing score is any function b(x) such that:

x AL t|b(x)

l.e., distribution of confounders is independent of treatment given b(x):

p(X = z|b(x),t =1) = p(X = z|b(z),t = 0)
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Propensity Score

Treatment 4

e Candidate b(x) = x, trivially satisfies:

t=1 ®
p(X:.CC‘ZE,t:1):p(X:$’I‘,t:O):1 t=0F —.M » Gender

e b(x) = x is the finest such function: OK for e.g. binary confounders,
but only gives point estimates for (almost) continuous confounders!

* Propensity score is the coarsest such function (i.e. more data

points, leading to better estimates): e(r) = p(t = 1|x)
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Propensity Score Matching

e | et the distribution of covariates follow an exponential family of
distributions (P(x) polynomial of degree k):

plz|t =t") = h(X) exp(P=(x)) , fort =0or 1

e Estimate propensity score e(X)=p(t=1Ix):

o (1205) - ) o L) v () -

e |f we consider k=1, linear exponential family (e.g. Bernoulli),

e(x) 1
1 — j p—
() S = -

N
e Fit parameters by maximising log-likelihood: LL = %Zlogp(t(“@(“)

1=0
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Propensity Score Matching Algorithms

e Match control and treatment individuals based on their propensity score
e Greedy matching:
- Randomly order list of control and treated.
- Start with the first individual from e.g. treated and match to control
with the smallest distance (i.e. obtains the local minimum)
- Remove individuals from control and matched treated
- Move to the next treated subject

Treatment Control
40 50
65 25
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N
Propensity Score Matching Algorithms

e Match control and treatment individuals based on their propensity score
e Greedy matching:
- Randomly order list of control and treated.
- Start with the first individual from e.g. treated and match to control
with the smallest distance (i.e. obtains the local minimum)
- Remove individuals from control and matched treated
- Move to the next treated subject

e Optimal matching: Minimises the global distance, computationally
demanding

N
o ATE: 7 =E[r¥] :E[ (Z) = %Z( 2 —yo )

1=0



N
Inverse Probability of Treatment Weighting (IPTW)

¢ |nflate the weight for under represented-subjects due to missing data

e Based on propensity score

e Weight: inverse probability of receiving observed treatment, for
individual i with covariate x:

Ty = @) = plt = 1]2)
wi — ? — —
ey i ti=0 R

e Example: Suppose individual (i) has a large e(x), i.e., their probability of
receiving treatment is high.

- If t; = 1then w; = 1 (typical behaviour: most with x; are treated)

- If £; = Othen w; > 1 (underrepresented: boost weight for rare event)



N
Inverse Probability of Treatment Weighting (IPTW)

¢ |nflate the weight for under represented-subjects due to missing data

e Based on propensity score
e Weight: inverse probability of receiving observed treatment, for

individual | with covariate x:

wi =4 @) e(w) = plt = 1]a)
T—e(z;) if tz' =0
Treated Not treated
X=0 OOOOOOOOO e(:c) =1/10=0.1
X=1 0000 (x) =4/5=0.8
=08 = =5/4 00 w=_— =05 =

Rosenbaum 1987
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Inverse Probability of Treatment Weighting (IPTW)

1 )1 1 y o1
o ATE: — ‘) (%)
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treated not treated

N = N1 + Ny

e Weights may be inaccurate/unstable for subjects with a very low
probability of receiving the observed treatment

e QOther variations to stabilise the above



e
Sensitivity Analysis

e Randomised trials are unconfounded by design (flipping a coin)

e Observational data may have possible hidden bias/unobserved
confounder that is not controlled for

e No guarantee that matching leads to balance on variables we did
not match for!

e People who look comparable may differ
e Violates ignorability (unconfoundedness) assumption

e Unconfoundedness is fundamentally (directly) unverifiable



e
Sensitivity Analysis

e “This difference in the unobserved covariate u, the critic
continues, is the real reason outcomes differ in the treated and
control groups: it is not an effect caused by the treatment, but
rather a failure on the part of the investigators to measure and
control imbalances in u. Although not strictly necessary, the critic
IS usually aided by an air of superiority: “This would never happen
in my laboratory.™

e “|t is Iimportant to recognize at the outset that our critic may be,
but need not be, on the side of the angels. The tobacco industry
and its (sometimes distinguished) consultants criticized, in
precisely this way, observational studies linking smoking with lung
cancer.”



e
Sensitivity Analysis
e |f there is hidden bias, how severe is it:

- Does the conclusion change from statistically significant to not?
- Does it change the direction of effect?

e |.e., how sensitive are our conclusions to minor violation of our
keys assumption

e |f very sensitive: change strategy (see Causal Inference with
Unobserved Confounders)



.
Sensitivity Analysis
e Take individuals (i) and (]), such that their observed covariates

are the same: X® = XU hence e'*) = ¢Y9) no hidden bias
e Consider e.g., the odds ratio:

o (9)
I 1—e®
_ < < T — I'~1
F — e(ﬂ) —
1—e(j)

e Otherwise if there is a hidden bias, e.g., ' = 2, one subject is
twice as likely to receive treatment because of unobserved pre-
treatment feature

e [ quantifies degree of bias.
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Sensitivity Analysis Computations: An example

e S pairs, s =1,...,S of two subjects, one treated, one control,
matched for observed covariates

o Statistical test: Wilcoxon’s signed rank test (non-parametric),
W is the sum of the ranks of the positive differences between
treatment and control

e |n a moderately large randomized experiment, under the null
hypothesis of no effect, W is approximately normally
distributed

AW = S(S+1)/4 , Var[W]=S(S+1)(2S +1)/24


http://www-stat.wharton.upenn.edu/~rosenbap/BehStatSen.pdf

.
Sensitivity Analysis Computations: An example

e Example: W=300, S=25 pairs in a randomised experiment
e In a randomised experiment (1" =~ 1, well-matched):

E[W] = 162.5 , Var[W] = 1381.25 , deviate Z = (300 — 162.5)/v/1381.25 = 3.70

e Compared to a normal distribution: p-value = 0.0001

e |n a moderately large observational study, under the null
hypothesis of no effect, the distribution of W is approximately
bounded between two Normal distributions (notice: 1" =~ 1)

Pmax = AS(S+1)/2 | pimin = (1 = A)S(5S+1)/2
0 =X1—-X)S(S+1)(25+1)/6
A=T/(1+T) Notice I' =1


http://www-stat.wharton.upenn.edu/~rosenbap/BehStatSen.pdf

.
Sensitivity Analysis Computations: An example

e Example: W=300, S=25 pairs in a randomised experiment
e ForI'=2, A\=T/(1+T1)=2/3

Umax = AS(S +1)/2=216.67 , pmin = (1 —X)S(S+1)/2=108.33
0® =A1—=X)S(S+1)(25 +1)/6 = 1227.78

Z1 =547 = p=0.00000002
Zo = 2.38 = p=0.009 still significant, even with ' = 2

e For the tobacco and lung cancer example, [' = 6.

Notice: There are two sources of uncertainty:

1) Due to the causal statistical estimates
2) Due to sensitivity analysis (of unobserved variables, bias)



http://www-stat.wharton.upenn.edu/~rosenbap/BehStatSen.pdf
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