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Causal inference with observed
confounders



e
Simpson’s Paradox

e Why concluding causality from purely associational measures, I.e.
correlation, can be very wrong (not just neutral): “It would have better
not to make any statements!”
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Causal Inference in Statistics, Pearl (2016)



So Far ...
e Matching: Stratification, balancing (propensity) score, IPTW, ...
r 1L t|b(x)
e Estimation of propensity scores directly from the data & algorithms

e(z) = p(t = 1|z)

e Sensitivity analysis: No guarantee that matching leads to balance on
variables we did not match for, people who look comparable may differ.
If there is hidden bias, how severe is it:
- Does the conclusion change from statistically significant to not?
- Does it change the direction of effect?

Notice: There are two sources of uncertainty:

1) Due to the (causal) statistical estimates
2) Due to sensitivity analysis (of unobserved variables, bias)
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e
Instrumental Variable (Originally due to Rubin)

e Unobserved confounders (U), violates unconfoundedness,
l.e. conditioning on X alone, would not results in a randomised
treatment assignment

e Unconfoundedness is fundamentally unverifiable



Instrumental Variable example

e Example 1:
- T. smoking during pregnancy
- Y: birthweight

- X: parity, mother’s age, weight, ... @
- U: Other unmeasured confounders

e Randomise Z (intention-to-treat): either receive encouragement to
stop smoking (Z=1), or receive usual care (Z=0)

® |ntention-to-treat analysis gives causal effect estimator of
encouragement z on outcome y:

3(y|z = 1) — E(y|z = 0)

e \What can we say about the causal effect of smoking itself?



.
Instrumental Variable assumptions

e SUTVA: Potential outcomes for each individual i are unrelated to the treatment
status of other individuals:

YO(Z,T) =YD (Z® 17O |Z| = |T| = N individuals
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.
Instrumental Variable assumptions

increases probability of treatment, no defiers):

SUTVA: Potential outcomes for each individual i are unrelated to the treatment
status of other individuals:

YO(Z,T) =YD (Z® 17O |Z| = |T| = N individuals
Treatment assignment Z (associated with the treatment) is random:
P(ZW =0)=P(Z% =1), Vi

Exclusion Restriction: Any effect of Zon Y is via an effectof Zon T, i.e.,
Z should not affect Y when T is held constant (Y(i)’Z _1 t) _ (Y(i)‘z _ 0 t)
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Monotonicity (increasing encouragement “dose”
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(T<i>|z — 1) > (T<@'>|z - 0)



L
Instrumental Variable: Potential values of T

Population T|z=0 T|z=1 Description

Causal effect of Zon T is zero, since

(T@\z = 1) _ (T<i>|z - o) )

Never-takers 0 0

(T(i)\z — 1) _ (T(i)|z — 0) —
Compliers 0 1 Treatment received is randomised
causal effect inference: (Y(i)\T(” — 1) = (Y(i)]T(“ = 0)

Rule out by monotonicity, since

(T@)\z - 1) _ (T<Z’>|z - 0) — 1

Defiers 1 0

Causal effect of Zon Y is zero, since

Always-takers 1 1
(T<i>|z = 1) _ (T<i>|z - 0) =0

Notation: T=1 is not smoking




Instrumental Variable: The estimand

Want ATE: K [(Y“Ht(i) - 1) ~ (Y<’i>|t<i> — 0)}

L [(YOlz = 1) — (Y©]z = 0)]
2 [(T0]z = 1) — (TD)]z = 0)]

Will estimate: |+ —




e
Instrumental Variable: The estimand

WantATE: F [(Y“)\t(i) — 1) - (Y D100 = 0)}

(Y W|z=1) — (YO|z =0)]
L [(TW]z=1) — (TW|z =0)]
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Derivation:

(y( NT@ (5 = 1) ) Yy @170 (2 = 0) ) t is either t=0 or t=1, and exclusion restriction

[Y()(t()—1> s |z—1)+Y<>(t<>—o) (1—(75(@')],2:1)):
_[yu)(t():l).(tm‘zzo) y()(tozo).(1_(?5@)‘2:0)):
(y()(() 1) y()(tm_o)).((tw‘zzl)_(t(i),z:o))

Hence, the causal effect of Z on Y for individual i, is the product
of the causal effect of Z on T, and, the casual effectof T on Y.
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e
Instrumental Variable: The estimand

To continue the derivation, we use the fact that:
E[XY]= //wy p(z,y)drdy = /dy yp(y)/dfc z p(zly) = /dy y p(y)E[z|y]
and write,

E[(YOIrOE=1) - (YOI =0) .01,

® (Y(@ (t@;) _ 1) _ v (t@:) _ 0) .((t<i>|z — 1) - (t<i>|z — 0))}

Rubin 1996



e
Instrumental Variable: The estimand

To continue the derivation, we use the fact that:

EL0Y) = [ [ oy p(ey)dady = [ dyyply) [ do o plaly) = [ dyy o)l

and write,

E —(Y('>|T<')(z 1)) (Y("')|T<i>(z = ( )} .+ 0,1,
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o
O
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e
Instrumental Variable: The estimand

E [(YO[T0(z = 1)) = (YOITO(z = 0)]
E[(tD|z=1) — (t®]z =0)]

B[ (= 1) v () [((€ 1) - (1= 0) - ]

l.e. restricting to|compliers, the average casual effectof Zon Y is
proportional to the average causal effect of Ton .

(Y W|z=1) — (YO|z =0)]
D [(T(i) z = 1) — (T(@\z — O)}

P
|

¢ |n this example, Z was randomly assigned as part of the study

e |V can also be randomised in nature (nature randomiser):

- Mendelian randomisation
- Quarter of birth (T=education, Y=earning)



Pearl’s framework
Graphical models & Do-calculus



L
Causal Inference

e Model a causal inference problem with assumptions manifest in Causal
Graphical Models [Pearl]

e |dentify an expression for the causal effect under these assumptions
(“causal estimand”), [Pearl]

o Estimate the expression using statistical methods such as matching or
instrumental variables, [Rubin’s Potential Outcomes]

e Verify the validity of the estimate using a variety of robustness checks.



N
Pearl’s Model of Causality

e | adder of causation:
- Association: What does a symptom tell me about a disease?
- Intervention (perturbation): If | take aspirin will my headache be
cured?
- Counterfactual: Was it the aspirin that stopped the headache?
(alternative versions of past events, strongest causal statements e.qg.
physical laws)

e Aim: To model and identify the causal estimand

e Causal graphical models + structural equations



Causal Graphical Models

e Diagrammatic representation of probability distributions + causal info
e Graph: Consists of a set of vertices V (nodes), edges E

e \/ are the variables and E contains information between the variables
e Graphs can be directed, undirected and bidirectional (confounder?)

O—0] 60 O—0

e Directed graphs may include directed cycles, i.e., mutual causation/feed-

back process. @

e A graph with no directed cycles is an acyclic graph.



Directed Acyclic Graphs (DAGS)

Z, X are parents of Y

Z, X, W are ancestors of Y
Y has no children

X has no parents

e DAG in which every node has at most one parent is a tree
e Atree in which every node has at most one child is a chain
e DAG:

- Expresses model assumptions explicitly

- Represents joint probability functions

- Provides efficient inference of observations



DAG contains more info than joint probability

p(a,b,c) = p(cla,b)p(a,b) = p(c|a, b)p(bla)p(a) Q’a
’19 -

symmetrlc

p(a,b,c) = p(alb, c)p(b, c) = p(a|b, c)p(c|b)p(

Symmetric
Ina, b, c

e Probabilistic notations are not enough to describe causal aspects

e Using repeated application of Bayes’ rule, one can write any joint
probability distribution in terms of its marginals and conditionals

e A graph is fully connected if there is a link between every pair of nodes

* The interest lies in the absence of a link and link direction.



Basic DAG structures:

e Conditional independence via graphs and D-separation
¢ 3 main graph structures:

Fork Chain Collider

e Next Lecture: Do-calculus and causal identification



Fork

p(a,b, c) = p(alc)p(blc)p(c) plalb, c)p(blc)p(c)

Case 1: No conditioning 0

p(a,b) =Y pla,b,c) =Y plalc)p(ble)p(c) # p(a)p(b) in general

Fork

= a /bl

Case 2: Conditioning on ¢

plable) = P ne) PRI o]y

= a 1L b|c c blocks (d-separates) the path fromato b




Chain

p(a,b,c) = p(a)p(cla)p(b|c)

Case 1: No conditioning Chain

p(a,b) =Y pla)p(cla)p(ble) = p(a) Y _p(ble)p(cla) = p(a)p(bla) # p(a)p(b)

= a /bl

Case 2: Conditioning on ¢

pla,b,¢) _ plafp(cla)p(ble) _ p(a)p(ble)plalc)p(c

p(c) p(c) p(c) p(a)

= p(alc)p(blc)

p(a, b‘C) —

= a 1l b|c c blocks (d-separates) the path fromatob



Collider

pla,b,¢) = p(a)p(b)p(cla, b) () (o)

Case 1: No conditioning G

Zp p(cla, b) Zp cla, b) P®) [Golider

= a L b|()  with no conditioning, a and b are independent

Case 2: Conditioning on c

_ p(a;b, ) — p(a)p(b)p(cla, b) alc c) in genera
pla,ble) = % - PROPELALD) s p(ale)p(t]c) in general

= a M blc c unblocks the path fromato b
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