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L
Causal Inference

e Model a causal inference problem with assumptions manifest in Causal
Graphical Models [Pearl]

e |dentify an expression for the causal effect under these assumptions
(“causal estimand”), [Pearl]

o Estimate the expression using statistical methods such as matching or
instrumental variables, [Rubin’s Potential Outcomes]

e Verify the validity of the estimate using a variety of robustness checks.



DAG contains more info than joint probability

p(a,b,c) = p(cla,b)p(a,b) = p(c|a, b)p(bla)p(a) Q’a
’19 -

symmetrlc

p(a,b,c) = p(alb, c)p(b, c) = p(a|b, c)p(c|b)p(

Symmetric
Ina, b, c

e Probabilistic notations are not enough to describe causal aspects

e Using repeated application of Bayes’ rule, one can write any joint
probability distribution in terms of its marginals

e A graph is fully connected if there is a link between every pair of nodes

* The interest lies in the absence of a link and link direction.



Recall:

e Conditional independence via graphs and D-separation
¢ 3 main graph structures:

Fork Chain Collider
a L b|0 a i b|0 a1l b|0
a1l blc all blc a L blc

e Do-calculus and causal identification



Collider example

B: State of battery, B=1 charged, B=0 flat ° G
F: State of fuel tank, F=1 full, F=0 empty

G: State of electric fuel gauge, G=1 full, G=0 empty
Collider

Given Info:
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Collider example

B: State of battery, B=1 charged, B=0 flat ° G
F: State of fuel tank, F=1 full, F=0 empty

G: State of electric fuel gauge, G=1 full, G=0 empty
Collider

@ Before any conditioning (before observing):
p(F=0)=0.1




Collider example

B: State of battery, B=1 charged, B=0 flat ° G
F: State of fuel tank, F=1 full, F=0 empty

G: State of electric fuel gauge, G=1 full, G=0 empty
Collider

@ Before any conditioning (before observing):
p(FF=0)=0.1

@ Now suppose we observe G=0

p(G =0|F = 0)p(F = Of/

p(G = 0)

p(F'=0|G =0) =



Collider example

B: State of battery, B=1 charged, B=0 flat ° G
F: State of fuel tank, F=1 full, F=0 empty

G: State of electric fuel gauge, G=1 full, G=0 empty

@ Before any conditioning (before observing):

p(F _ O) 01 Collider
@ Now suppose we observe G=0
DF = 0/G — ) = PG = OIF = Op(F = 0/
/ PE=0__ S p(G=0,B,F)
B,Fe{0,1}
2. p(G=0F=0.B)p(B) =081 = > p(G=0|B, F)p(B|F)p(F)

Belo.l ‘/ ‘/ B,Fe{0,1}

= S p(G=0|B, F)p(B)p(F) = 0315
Since B and F are independent 5 refo.13 v v Vv



Collider example

B: State of battery, B=1 charged, B=0 flat e e
F: State of fuel tank, F=1 full, F=0 empty

G: State of electric fuel gauge, G=1 full, G=0 empty
Collider

(1) p(F=0)=01

(2) p(F =0|G =0)=0.257

p(F = 0) <p(F =0|G =0)

Observing that gauge reads empty makes it
more likely that the tank is indeed empty.



Collider example

B: State of battery, B=1 charged, B=0 flat
F: State of fuel tank, F=1 full, F=0 empty
G: State of electric fuel gauge, G=1 full, G=0 empty

(2) p(F =0|G =0)=0.257

@ Now we also observe B=0

p(F=0,G=0,B=0)
p(G=0,B=0)

p(F=0/G=0,B=0)=

Collider




Collider example

B: State of battery, B=1 charged, B=0 flat ° e
F: State of fuel tank, F=1 full, F=0 empty

G: State of electric fuel gauge, G=1 full, G=0 empty

(2) p(F =0|G=0)=0.257 a

Collider

@ Now we also observe B=0

p(F=0,G=0,B=0)

F: p— B p— —

p(F =0|G =0) > p(F = 0|G =0, B = 0)

Probability that tank is empty F=0 has decreased with extra
information on the state of the battery



Collider example

B: State of battery, B=1 charged, B=0 flat ° e

F: State of fuel tank, F=1 full, F=0 empty
G: State of electric fuel gauge, G=1 full, G=0 empty

(1) p(F=0)=01

(2) p(F=0|G =0)=0.257

Collider

(s) p(F=0|G=0,B=0)=0.111

Conditioning on G, then finding out the battery is flat, ‘explains
away’ the observation that the fuel gauge reads empty. The state

of the fuel tank and the battery have become dependent:
p(F = 0|G = 0) # p(F = 0|G =0, B = 0)

(Even though: p(F) = p(F'|B) )




-
D-separation

A path p is blocked by a set of nodes Z if and only If:

1) p contains a chain of nodesA->B->CoraforkA<-B->C
such that the middle node B is in Z (i.e. B is conditioned on), or

2) p contains a collider A -> B <- C such that the collision node B
IS not in Z, and no descendant of B is in Z.
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Overview of the course

Causal Inference

Causal Effect Estimation Casual Discovery
|
|
Obsv confounders Unobsv confounders _
| Constraint- Score- ECM
based based
Front-

Regression || Propensity

Adjustment score v door

criterion Modern ML
Rubin Rubin, Pearl
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Pearl’s framework
Graphical models & Do-calculus



Observation (conditioning) vs intervention

Distinguish between: a variable T takes a value t naturally and cases
where we fix T=t by denoting the latter do(T=t)

p(Y =y|T =1t

Probability that Y=y conditional on finding T=t
l.e., population distribution of Y among individuals °
whose T value is t (subset)

p(Y = yldo(T = 1) ()—(

Probability that Y=y when we intervene to make T=t
l.e., population distribution of Y if everyone in the population had

their T value fixed at t.

Graph surgery




The adjustment formula

T: Drug usage
X: Gender
Y: Recovery

To know how effective the drugs is in the population, compare the
hypothetical interventions by which

(i) the drug is administered uniformly to the entire population do(T=1) vs
(i) complement, i.e., everyone is prevented from taking the drug do(T=0)

Aim: Estimate the difference (Average Causal Effect ACE)

p(Y = 1ldo(T = 1)) — p(Y = 1|do(T" = 0))




The adjustment formula

Using a causal theory, we aim to write p(Y = y|do(T = t)) in terms of
guantities we can compute from the data, i.e., conditional probabillities.

The causal effect p(Y = y|do(T =t)) is equal to conditional °
probability pm(Y — yIT — t) In the manipulated graph

Key observation: P, shares 2 properties with P :
(i) pm(X = z) = p(X = z) is invariant under the intervention, X is not
affected by removing the arrow from X to T, i.e. the proportion of

males and females remain the same before and after the intervention

(i) pm(Y =y|X =2, T =1t) =p(Y =y|X =2,T =1) is invariant



The adjustment formula

Moreover, T and X are d-separated in the modified model:

Pm(X =z|T =t) =pp(X =2)=p(X =x) *

Pearl, Causal Inference in Statistics (2016)



The adjustment formula

Moreover, T and X are d-separated in the modified model:
Pm(X =2z|T =t) = pm(X =2) =p(X =) *
Putting these together:

p(Y = yldo(T' = t)) = pm (Y = y|T =) by definition
me(Y =y|T =1t,X = 2)pn(X = z|T =t) law of total prob

me(Y =y|T =t, X =2)pp(X =2) %



The adjustment formula

Moreover, T and X are d-separated in the modified model:
Pm(X =2 =1) =pn(X =) =p(X =x) *
Putting these together:

p(Y = yldo(T' = t)) = pm (Y = y|T =) by definition
me(Y =y|T =1t,X = 2)pn(X = z|T =t) law of total prob

me(Y =y|T =t, X =2)pp(X =2) %

Using the two invariance relations, we have the adjustment formula:

p(Y = y|do(T Zp =y|T =1, X = z)p(X = )




The adjustment formula

Moreover, T and X are d-separated in the modified model:
Pm(X =2 =1) =pn(X =) =p(X =x) *
Putting these together:

p(Y = yldo(T' = t)) = pm (Y = y|T =) by definition
me(Y =y|T =1t,X = 2)pn(X = z|T =t) law of total prob

me(Y =y|T =t, X =2)pp(X =2) %

Using the two invariance relations, we have the adjustment formula:

p(Y = y|do(T Zp =y|T =1, X = z)p(X = )




The adjustment formula

p(Y =yldo(T =t)) = > p(Y =y|T =t,X = 2)p(X = )

Adjusting for X (controlling for X) ... seen before?

Example: T=1 taking the drug, X=1 male, Y=1 recovery

Table 1.1 Results of a study into a new drug, with gender being taken into account

Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)



e
The adjustment formula

T=1 taking drug
p(Y = y|do(T Zp =y|T =t,X =x)p(X = x) X=1 male

Y=1 recovery

p(Y =yldo(T=1))=pY =1T=1,X=1)pX=1)+pY =1T=1,X =0)p(X =0)

0.93(87 +270) | 0.73(263 + 80)

Y =1 T =1)) = = 0.832
0.87(87 +270)  0.69(263 + 80)
Y = 1|do(1T = — = 0.781
p( |do( 0)) —00 -+ =00 0.7818

ACE : p(Y = 1|do(T = 1)) — p(Y = 1|do(T = 0)) = 0.832 — 0.7818 = 0.0505 \/

Table 1.1 Results of a study into a new drug, with gender being taken into account

Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)



e
The adjustment formula

T=1 taking drug
p(Y = y|do(T Zp =y|T =t,X =x)p(X = x) X=1 male

Y=1 recovery

p(Y =yldo(T=1))=pY =1T=1,X=1)pX=1)+pY =1T=1,X =0)p(X =0)

0.93(87 +270) | 0.73(263 + 80)

— 0.832 ‘Stratification! ‘
700 700

p(Y =1|do(T =1)) =

0.87(87 + 270 0.69(263 + &0 :
p(Y =1|do(T = 0)) = ( 5 ) n ( e ) _ 07318 |Note eguwalence
to Rubin’s FW

ACE : p(Y = 1|do(T = 1)) — p(Y = 1|do(T = 0)) = 0.832 — 0.7818 = 0.0505 \/

Table 1.1 Results of a study into a new drug, with gender being taken into account

Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)
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Pearl & Rubin

‘Peaﬂ‘

E(Y|do(T =1)) = E(Y|T =1, X = 1)p(
E(Y|do(T = 0)) = E(Y|T =0, X = 1)p(
E(Y|do(T = 1)) — E(Y |do(T = 0))

=D +EY|T=1,X =0)p(X = 0)
=) +EY|T =0,X = 0)p(X = 0)

‘Rubin ‘ recall potential outcomes yq() and y+() and ATE:

N
St ()] e (i i 1 i i
r=ErO) =Bl -y’ = = 3 (" - ")



S
Pearl & Rubin

‘Peaﬂ‘
E(Y|do(T=1)=EY|T=1,X=1)p(X=1)+EY|T=1,X=0)pX =0
E(Y|do(T=0)=EY|T'=0,X=1)p(X=1)+EY|I]=0,X =0)p(X =0)
E(Y|do(T = 1)) — E(Y|do(T = 0))

‘Rubin ‘ recall potential outcomes yo() and y+() and /ATE!

N
= i - ) () 1 ) )
= Bl =Bl ") = 5D (1" — ")
1=0 ¢

le( S (<z>_y(gz>)+ S ((@y(()@))

1Emales 1Efemales



Pearl: To adjust or not to adjust

The previous example may give the impression that X-specific analysis, as
compared to nonspecific, is the correct way forward. This is not the case.
For example, let T=drug, Y=recovery, X= blood pressure post-treatment,
l.e., important to take into account how the data is generated. Here, we
Know:

(i) the drug affects recovery by lowering the blood pressure

(i) but it has a toxic effect for those who take it

NB: Data (numbers) in this table are identical to those in Table 1.1.

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)



e
Pearl: To adjust or not to adjust

For general population, the drug might improve recovery rates because of its effect

on blood pressure. But in low BP/high BP post-treatment subpopulations, we only
observe the toxic effect of the drug.

Aim, as before, to gauge the overall causal effect of the drug on recovery.
Unlike before, it does not make sense to separate results by blood pressure as
treatment affect recovery via reducing BP.

Contrast this with the a situation per BP is measure before treatment and direction
of arrow from T to X is reversed.

Therefore, we should recommend treatment in this case because 78% < 83% .

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)



Pearl: To adjust or not to adjust

Pearls algorithmic approach tells us to adjust or not. Starting with:
p(Y = 1|do(T = 1)), intervene on T. But since no arrow is entering T,
there will be no change in the graph: p(Y =1|do(T' =1)) =p(Y =1|T =1)

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Pearl, Causal Inference in Statistics (2016)



Pearl: To adjust or not to adjust

Pearls algorithmic approach tells us to adjust or not. Starting with:
p(Y = 1|do(T = 1)), intervene on T. But since no arrow is entering T,
there will be no change in the graph: p(Y =1|do(T' =1)) =p(Y =1|T =1)

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

The Causal Effect Rule: Given a graph G in which a set of variables PA
are designated as the parents of T, the causal effect of T on Y is given by:

p(Y = y|do(T Zp =y|T =t,PA = X)p(PA = X)

Pearl, Causal Inference in Statistics (2016)



O
The Backdoor Criterion

Under what conditions does a causal model permit computing the causal effect of one
variable on another, from data obtained from passive observations, with no intervention?
l.e.,

Under what conditions is the structure of a causal graph sufficient of computing a causal
effect from a given data set? Identifiability

Backdoor Criterion: Given an ordered pair of variables (T,Y) in a DAG G, a set of variables X
satisfies the backdoor criterion relative to (T,Y) if:

() nonode in X is a descendent of T

(i) X block every path between T and Y that contains an arrow into T
If X satisfies the backdoor criterion then the causal effect of T on Y is given by:

p(Y = yldo(T Zp =ylT =t,X =2)p(X = )

v X




Rubin vs Pearl

Rubin

Pearl

SUTVA

Unconfoundedness

Potential outcomes: Yol), y10)
Observed: Yol), Unobserved: y*1()

Implicit assumption of no interference
between any pairs of individual

Back-door criterion satisfied

Counterfactuals are equivalent to individual
unobserved outcomes in Rubin
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