# Causality in Biomedicine Lecture Series: Lecture 5

Ava Khamseh (Biomedical Al Lab)

**IGMM & School of Informatics** 



20 Nov, 2020

#### **Causal Inference**

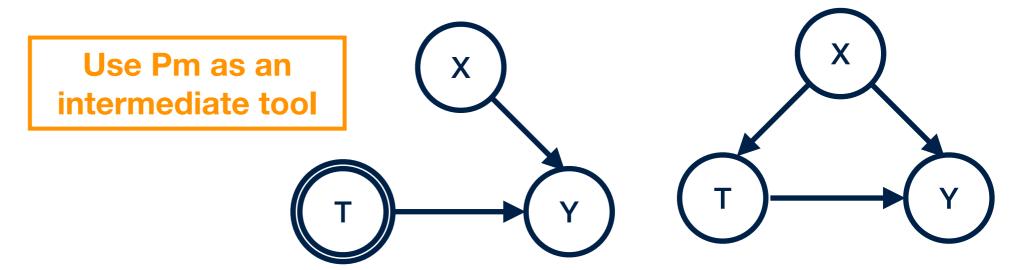
- Model a causal inference problem with assumptions manifest in Causal Graphical Models [Pearl]
- Identify an expression for the causal effect under these assumptions ("causal estimand"), [Pearl]
- Estimate the expression using statistical methods such as matching or instrumental variables, [Rubin's Potential Outcomes]
- Verify the validity of the estimate using a variety of robustness checks.

## The adjustment formula

T: Drug usage

X: Gender

Y: Recovery



To know how effective the drugs is in the population, compare the **hypothetical interventions** by which

- (i) the drug is administered uniformly to the entire population do(T=1) **vs**
- (ii) complement, i.e., everyone is prevented from taking the drug do(T=0)

Aim: Estimate the difference (Average Causal Effect ACE)

$$p(Y = 1|do(T = 1)) - p(Y = 1|do(T = 0))$$

#### **The Backdoor Criterion**

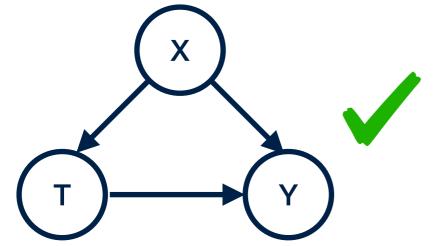
Under what conditions does a causal model permit computing the causal effect of one variable on another, from **data** obtained from **passive observations**, with **no intervention**? i.e.,

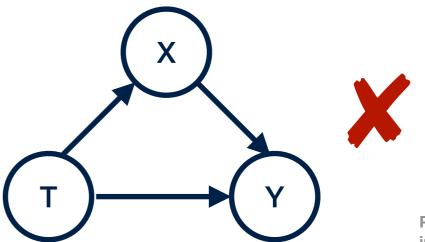
Under what conditions is the structure of a causal graph sufficient of computing a causal effect from a given data set?

**Backdoor Criterion:** Given an ordered pair of variables (T,Y) in a DAG G, a set of variables X satisfies the backdoor criterion relative to (T,Y) if:

- (i) no node in X is a descendent of T
- (ii) X block every path between T and Y that contains an arrow into T If X satisfies the backdoor criterion then the causal effect of T on Y is given by:

$$p(Y = y|do(T = t)) = \sum_{x} p(Y = y|T = t, X = x)p(X = x)$$

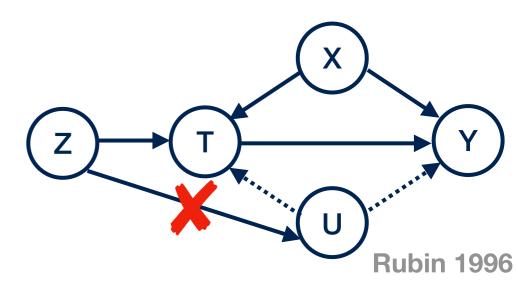




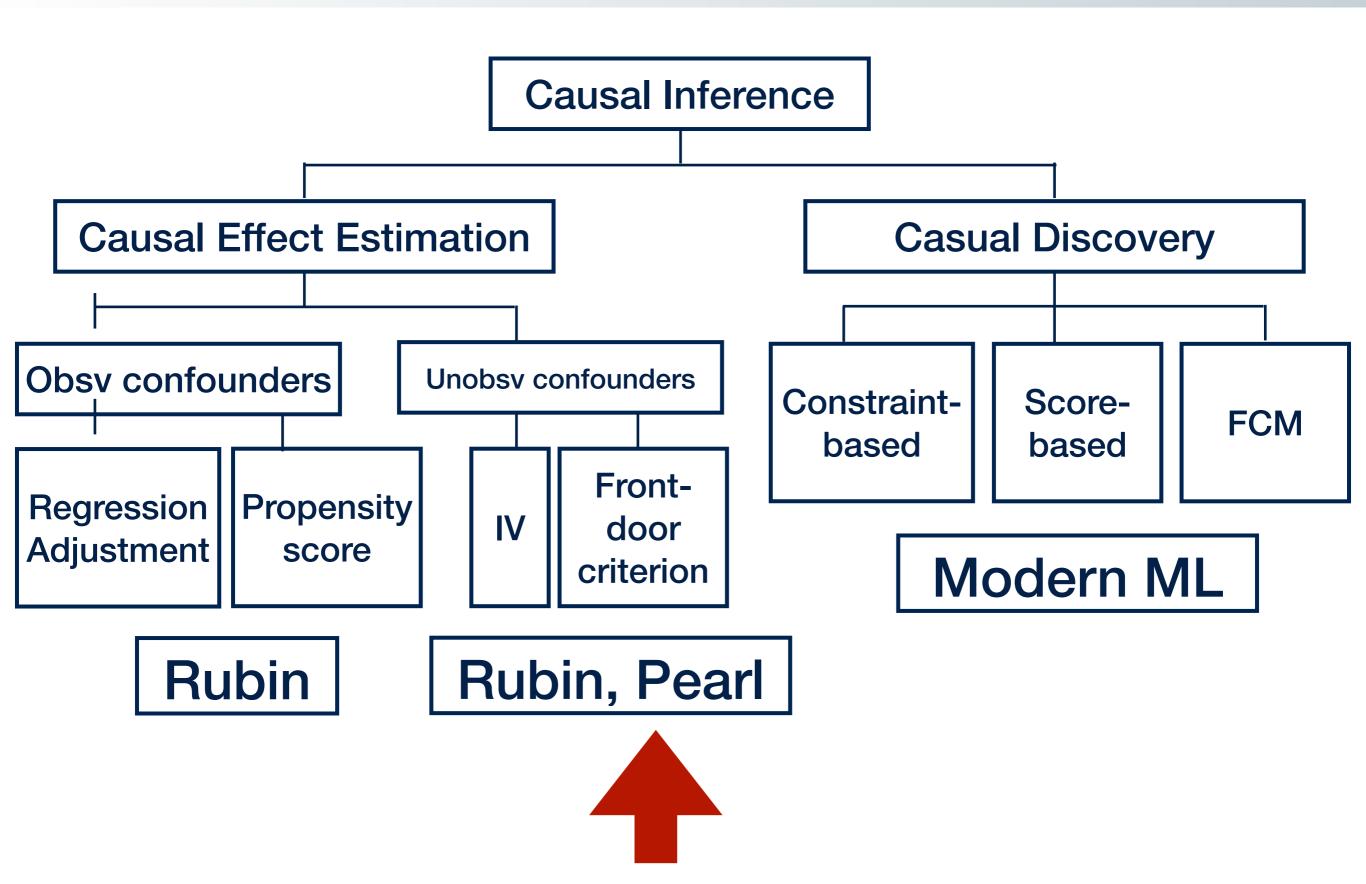
- Backdoor does not exhaust all ways of estimating causal effects from a graph
- Front-door criterion can still be used for patterns that do not satisfy the backdoor criterion
- Example: Smoking and lung cancer (1970), industry argued to prevent antismoking regulation by suggesting that the correlation could be explained by a carcinogenic genotype that induces a craving for nicotine
- Recall sensitivity analysis in Lecture 2
- Recall instrumental variable approach in Lecture 3

## Instrumental Variable assumptions

- Treatment assignment Z (associated with the treatment) is random, i.e., not affect by confounders (observed or unobserved)
- Exclusion Restriction: Any effect of Z on Y is via an effect of Z on T, i.e., Z should not affect Y when T is held constant  $(Y^{(i)}|z=1,t)=(Y^{(i)}|z=0,t)$
- Non-zero Average:  $\mathbb{E}\left[\left(T^{(i)}|z=1\right)-\left(T^{(i)}|z=0\right)\right]$
- Monotonicity (increasing encouragement "dose" increases probability of treatment, no defiers):  $\left( T^{(i)}|z=1 \right) \geq \left( T^{(i)}|z=0 \right)$



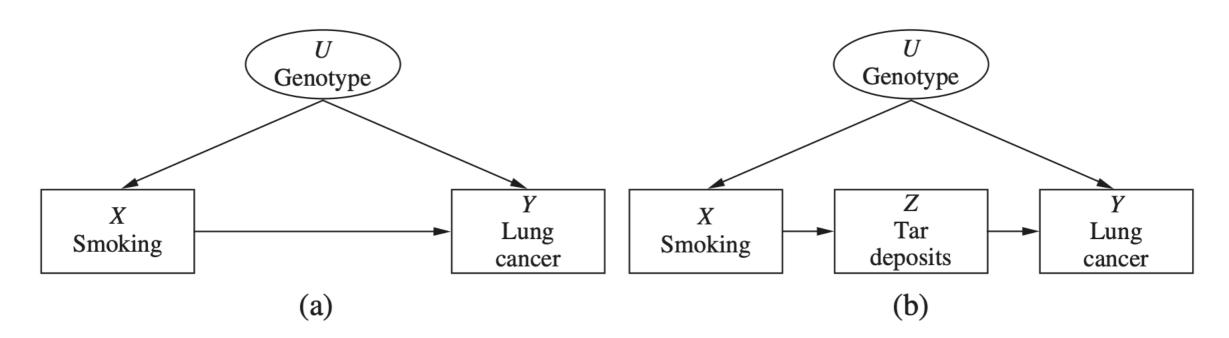
#### Overview of the course



## Pearl's Front-Door Criterion: An example

- Fig (a): The graph does not satisfy the backdoor, since the quantity we need to condition on to block the path, i.e. the genotype, is unobserved
- Fig (b): Additional measurement available: tar deposits in patients lungs
- Fig (b) still does not satisfy the backdoor criterion but we can determine the causal effect:

$$p(Y = y|do(X = x))$$



**Figure 3.10** A graphical model representing the relationships between smoking (X) and lung cancer (Y), with unobserved confounder (U) and a mediating variable Z

## Pearl's Front-Door Criterion: A crafted example

#### **Interpretation 1: Tobacco industry**

#### Beneficial effect of smoking:

15% of smokers have developed lung cancer vs 90.25% of non-smokers within tar and non-tar subgroups, smokers have a much lower percentage of cancer than non-smokers (numbers in the table are engineered to illustrate the point that observations are not to be trusted)

**Table 3.1** A hypothetical data set of randomly selected samples showing the percentage of cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

|           | Tar 400 Smokers Nonsmokers |       | N       | No tar     | All subjects |            |  |
|-----------|----------------------------|-------|---------|------------|--------------|------------|--|
|           |                            |       |         | 400        |              | 800        |  |
|           |                            |       | Smokers | Nonsmokers | Smokers      | Nonsmokers |  |
|           | 380                        | 20    | 20      | 380        | 400          | 400        |  |
| No cancer | 323                        | 1     | 18      | 38         | 341          | 39         |  |
|           | (85%)                      | (5%)  | (90%)   | (10%)      | (85%)        | (9.75%)    |  |
| Cancer    | 57                         | 19    | 2       | 342        | 59           | 361        |  |
|           | (15%)                      | (95%) | (10%)   | (90%)      | (15%)        | (90.25%)   |  |

## Pearl's Front-Door Criterion: A crafted example

#### **Interpretation 2: Anti-smoking lobbyists**

Smoking increases the risk of lung cancer

If one chooses to smoke, then one's chances of building tar deposits are 95% (380/400) vs 5% (20/400) for the non-smokers.

To evaluate effect of tar, look at **smokers and non-smokers separately**. Tar has harmful effects in both groups: in smokers it increases risk of cancer from 10% to 15% and in non-smokers 90% to 95%. Therefore: Smoking -> tar -> cancer.

Regardless of any natural craving, avoid harmful tar by not smoking.

**Table 3.2** Reorganization of the data set of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (numbers in thousands)

|           | Smokers<br>400 |        | Nonsr | nokers | All subjects |        |
|-----------|----------------|--------|-------|--------|--------------|--------|
|           |                |        | 400   |        | 800          |        |
|           | Tar            | No tar | Tar   | No tar | Tar          | No tar |
|           | 380            | 20     | 20    | 380    | 400          | 400    |
| No cancer | 323            | 18     | 1     | 38     | 324          | 56     |
|           | (85%)          | (90%)  | (5%)  | (10%)  | (81%)        | (19%)  |
| Cancer    | 57             | 2      | 19    | 342    | 76           | 344    |
|           | (15%)          | (10%)  | (95%) | (90%)  | (19%)        | (81%)  |

X -> Z is **identifiable**, since no back path from X and Z:  $X \leftarrow U \rightarrow Y \leftarrow Z$ 

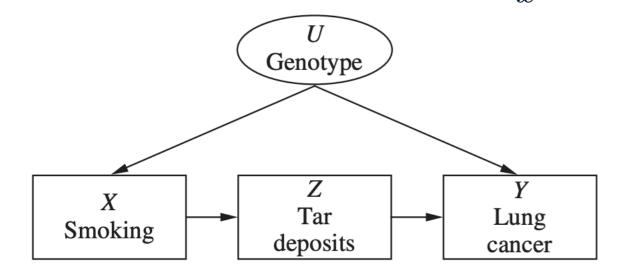
$$p(Z = z | do(X = x)) = p(Z = z | X = x)$$

Z -> Y is **identifiable**, since backdoor from Z to Y:

$$Z \leftarrow X \leftarrow U \rightarrow Y$$

is **blocked** by conditioning on X:

$$p(Y = y|do(Z = z)) = \sum_{x} p(Y = y|Z = z, X = x)p(X = x)$$



Letting z be the value Z takes when setting X=x, from the graph, we have:

$$p(Y|do(X = x)) = p(Y|do(X = x), Z) = p(Y|do(Z = z))$$

Then summing over all states z of Z:

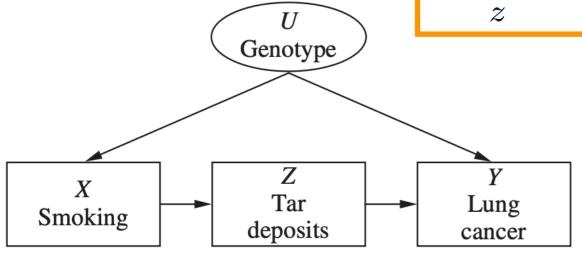
$$p(Y=y|do(X=x)) = \sum_{z} p(Y=y,z|do(X=x)) \qquad \text{Total prob rule}$$

Product rule:

$$=\sum_{z} p(Y = y|z, do(X = x))p(z|do(X = x))$$

Line 1

$$= \sum_{z} p(Y = y|do(Z = z))p(z|do(X = x))$$



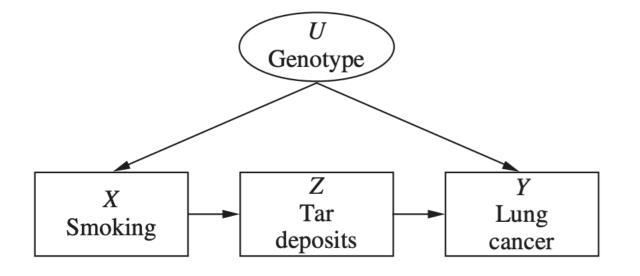
$$p(Z = z | do(X = x)) = p(Z = z | X = x)$$

$$p(Y = y|do(Z = z)) = \sum_{x'} p(Y = y|Z = z, X = x')p(X = x')$$

$$p(Y = y|do(X = x)) = \sum_{z} p(Y = y|do(Z = z))p(Z = z|do(X = x))$$

Using ★ and ★★ summing over all states z of Z:

$$p(Y = y|do(X = x)) = \sum_{z} \sum_{x'} p(Y = y|Z = z, X = x') p(X = x') p(Z = z|X = x)$$



**Front-door formula** 

$$p(Y = y|do(X = x)) = \sum_{z} \sum_{x'} p(Y = y|Z = z, X = x') p(X = x') p(Z = z|X = x)$$

$$p(Y = 1|do(X = 1)) = p(Y = 1|z = 0, x' = 0)p(x' = 0)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 0, x' = 1)p(x' = 1)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 0)p(x' = 0)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$= 0.5475$$

$$p(Y = 1|do(X = 0)) = 0.5025$$

#### Average Causal Effect ACE: p(Y = 1|do(X = 1)) - p(Y = 1|do(X = 0)) = 0.045

**Table 3.2** Reorganization of the data set of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (numbers in thousands)

|           | Smokers<br>400<br>Tar No tar |       | Nonsr | nokers | All subjects<br>800 |        |
|-----------|------------------------------|-------|-------|--------|---------------------|--------|
|           |                              |       | 40    | 00     |                     |        |
|           |                              |       | Tar   | No tar | Tar                 | No tar |
|           | 380                          | 20    | 20    | 380    | 400                 | 400    |
| No cancer | 323                          | 18    | 1     | 38     | 324                 | 56     |
|           | (85%)                        | (90%) | (5%)  | (10%)  | (81%)               | (19%)  |
| Cancer    | 57                           | 2     | 19    | 342    | 76                  | 344    |
|           | (15%)                        | (10%) | (95%) | (90%)  | (19%)               | (81%)  |

4.5% increase

$$p(Y = y|do(X = x)) = \sum_{z} \sum_{x'} p(Y = y|Z = z, X = x') p(X = x') p(Z = z|X = x)$$

$$p(Y = 1|do(X = 1)) = p(Y = 1|z = 0, x' = 0) p(x' = 0) p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 0, x' = 1) p(x' = 1) p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 0) p(x' = 0) p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1) p(x' = 1) p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1) p(x' = 1) p(z = 1|x = 1)$$

$$= 0.5475$$

$$p(Y = 1|do(X = 0)) = 0.5025$$

#### Average Causal Effect ACE: p(Y = 1|do(X = 1)) - p(Y = 1|do(X = 0)) = 0.045

**Table 3.2** Reorganization of the data set of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (numbers in thousands)

Smokers Nonsmokers All subjects 400 400 800 No tar Tar No tar Tar Tar No tar 380 20 380 400 400 No cancer 323 18 1 38 324 56 (85%)(90%)(5%)(10%)(81%)(19%)Cancer 57 2 19 342 76 344 (15%)(10%)(95%)(90%)(19%)(81%)

4.5% increase

$$p(Y = y|do(X = x)) = \sum_{z} \sum_{x'} p(Y = y|Z = z, X = x') p(X = x') p(Z = z|X = x)$$

$$p(Y = 1|do(X = 1)) = p(Y = 1|z = 0, x' = 0)p(x' = 0)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 0, x' = 1)p(x' = 1)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 0)p(x' = 0)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)$$

$$= 0.5475$$

$$p(Y = 1|do(X = 0)) = 0.5025$$

#### Average Causal Effect ACE: p(Y = 1|do(X = 1)) - p(Y = 1|do(X = 0)) = 0.045

**Table 3.2** Reorganization of the data set of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (numbers in thousands)

|           | Smokers<br>400<br>Tar No tar |       | Nonsr | nokers | All subjects |        |  |
|-----------|------------------------------|-------|-------|--------|--------------|--------|--|
|           |                              |       | 40    | 400    |              | 800    |  |
|           |                              |       | Tar   | No tar | Tar          | No tar |  |
|           | 380                          | 20    | 20    | 380    | 400          | 400    |  |
| No cancer | 323                          | 18    | 1     | 38     | 324          | 56     |  |
|           | (85%)                        | (90%) | (5%)  | (10%)  | (81%)        | (19%)  |  |
| Cancer    | 57                           | 2     | 19    | 342    | 76           | 344    |  |
|           | (15%)                        | (10%) | (95%) | (90%)  | (19%)        | (81%)  |  |

4.5% increase

$$p(Y = y|do(X = x)) = \sum_{z} \sum_{x'} p(Y = y|Z = z, X = x') p(X = x') p(Z = z|X = x)$$

$$p(Y = 1|do(X = 1)) = p(Y = 1|z = 0, x' = 0) p(x' = 0)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 0, x' = 1)p(x' = 1)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 0)p(x' = 0)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$= 0.5475$$

$$p(Y = 1|do(X = 0)) = 0.5025$$

#### Average Causal Effect ACE: p(Y = 1|do(X = 1)) - p(Y = 1|do(X = 0)) = 0.045

**Table 3.2** Reorganization of the data set of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (numbers in thousands)

|           | Smokers<br>400 |        | Nonsm | okers  | All subjects 800 |        |
|-----------|----------------|--------|-------|--------|------------------|--------|
|           |                |        | 400   | 0      |                  |        |
|           | Tar            | No tar | Tar   | No tar | Tar              | No tar |
|           | 380            | 20     | 20    | 380    | 400              | 400    |
| No cancer | 323            | 18     | 1     | 38     | 324              | 56     |
|           | (85%)          | (90%)  | (5%)  | (10%)  | (81%)            | (19%)  |
| Cancer    | 57             | 2      | 19    | 342    | 76               | 344    |
|           | (15%)          | (10%)  | (95%) | (90%)  | (19%)            | (81%)  |

4.5% increase

$$p(Y = y|do(X = x)) = \sum_{z} \sum_{x'} p(Y = y|Z = z, X = x') p(X = x') p(Z = z|X = x)$$

$$p(Y = 1|do(X = 1)) = p(Y = 1|z = 0, x' = 0)p(x' = 0)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 0, x' = 1)p(x' = 1)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 0)p(x' = 0)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$= 0.5475$$

$$p(Y = 1|do(X = 0)) = 0.5025$$

#### Average Causal Effect ACE: p(Y = 1|do(X = 1)) - p(Y = 1|do(X = 0)) = 0.045

**Table 3.2** Reorganization of the data set of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (numbers in thousands)

|           | Smokers<br>400 |        | Nonsr | nokers | All sub | jects  |
|-----------|----------------|--------|-------|--------|---------|--------|
|           |                |        | 40    | 00     | 800     |        |
|           | Tar            | No tar | Tar   | No tar | Tar     | No tar |
|           | 380            | 20     | 20    | 380    | 400     | 400    |
| No cancer | 323            | 18     | 1     | 38     | 324     | 56     |
|           | (85%)          | (90%)  | (5%)  | (10%)  | (81%)   | (19%)  |
| Cancer    | 57             | 2      | 19    | 342    | 76      | 344    |
|           | (15%)          | (10%)  | (95%) | (90%)  | (19%)   | (81%)  |

4.5% increase

$$p(Y = y|do(X = x)) = \sum_{z} \sum_{x'} p(Y = y|Z = z, X = x') p(X = x') p(Z = z|X = x)$$

$$p(Y = 1|do(X = 1)) = p(Y = 1|z = 0, x' = 0)p(x' = 0)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 0, x' = 1)p(x' = 1)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 0)p(x' = 0)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$= 0.5475$$

$$p(Y = 1|do(X = 0)) = 0.5025$$

#### Average Causal Effect ACE: p(Y = 1|do(X = 1)) - p(Y = 1|do(X = 0)) = 0.045

**Table 3.2** Reorganization of the data set of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (numbers in thousands)

|           | Smokers<br>400<br>Tar No tar |       | Non   | smokers | All sub | jects  |
|-----------|------------------------------|-------|-------|---------|---------|--------|
|           |                              |       |       | 400     | 800     |        |
|           |                              |       | Tar   | No tar  | Tar     | No tar |
|           | 380                          | 20    | 20    | 380     | 400     | 400    |
| No cancer | 323                          | 18    | 1     | 38      | 324     | 56     |
|           | (85%)                        | (90%) | (5%)  | (10%)   | (81%)   | (19%)  |
| Cancer    | 57                           | 2     | 19    | 342     | 76      | 344    |
|           | (15%)                        | (10%) | (95%) | (90%)   | (19%)   | (81%)  |

4.5% increase

$$p(Y = y|do(X = x)) = \sum_{z} \sum_{x'} p(Y = y|Z = z, X = x') p(X = x') p(Z = z|X = x)$$

$$p(Y = 1|do(X = 1)) = p(Y = 1|z = 0, x' = 0)p(x' = 0)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 0, x' = 1)p(x' = 1)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 0)p(x' = 0)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x' = 1)$$

$$+ p(X = 1|z = 1, x'$$

$$p(Y = 1|do(X = 0)) = 0.5025$$

#### Average Causal Effect ACE: p(Y = 1|do(X = 1)) - p(Y = 1|do(X = 0)) = 0.045

**Table 3.2** Reorganization of the data set of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (numbers in thousands)

|           | Smokers<br>400 |       | Nonsmokers<br>400 |        | All subjects<br>800 |        |
|-----------|----------------|-------|-------------------|--------|---------------------|--------|
|           | Tar No tar     |       | Tar               | No tar | Tar                 | No tar |
|           | 380            | 20    | 20                | 380    | 400                 | 400    |
| No cancer | 323            | 18    | 1                 | 38     | 324                 | 56     |
|           | (85%)          | (90%) | (5%)              | (10%)  | (81%)               | (19%)  |
| Cancer    | 57             | 2     | 19                | 342    | 76                  | 344    |
|           | (15%)          | (10%) | (95%)             | (90%)  | (19%)               | (81%)  |

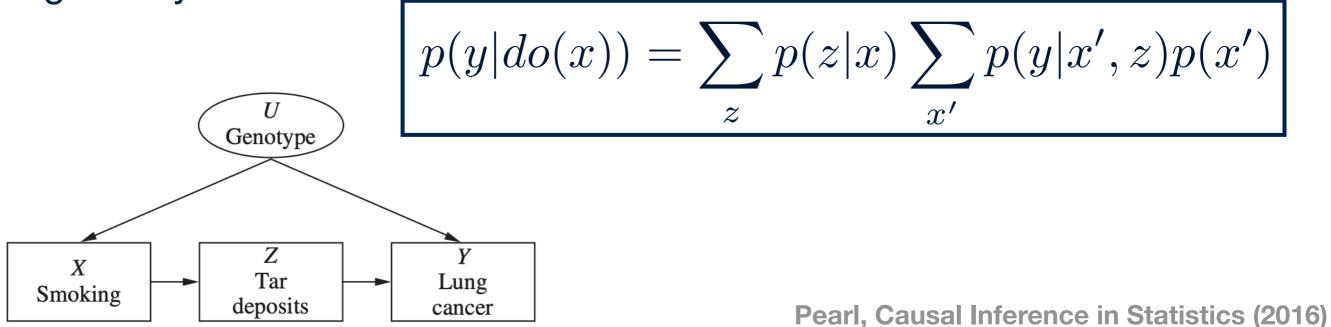
4.5% increase

## Pearl's Front-Door Adjustment

**Front-door criterion**: A set of variables Z is said to satisfy the front-door criterion relative to (X,Y) if:

- 1. Z intercepts all directed paths from X to Y
- 2. There is no unblocked path from X to Z
- 3. All backdoor paths from Z to Y are blocked by X

**Front-door adjustment**: If Z satisfied the front-door criterion relative to (X,Y), and if p(x,z)>0, then the causal effect of X on Y is identifiable and is given by:



#### **Do Calculus**

- Do-calculus: Contains, as subsets:
  - Backdoor criterion
  - Front-door criterion
- Allows analysis of more intricate structure beyond back- and front-door
- Uncovers all causal effects that can be identified from a given causal graph
- Power of causal graphs is not just representation but actually discovery of causal information

## **DoWhy Simulations**

Simple DoWhy tutorials on my GitHub 'Causality in Biomedicine'

#### **DoWhy tutorials:**

https://microsoft.github.io/dowhy/index.html

#### **CausalGraphicalModels Tutorials:**

https://github.com/ijmbarr/causalgraphicalmodels

Adjusting for the wrong variable: <a href="http://www.degeneratestate.org/posts/2018/Jul/10/">http://www.degeneratestate.org/posts/2018/Jul/10/</a>

causal-inference-with-python-part-2-causal-graphical-models/

Front-door: <a href="http://www.degeneratestate.org/posts/2018/Sep/03/causal-inference-with-">http://www.degeneratestate.org/posts/2018/Sep/03/causal-inference-with-</a>

python-part-3-frontdoor-adjustment/

#### Also see ML extensions to DoWhy, e.g. EconML:

https://github.com/microsoft/EconML

# Causality in Biomedicine Lecture Series: Lecture 5

Ava Khamseh (Biomedical Al Lab)

**IGMM & School of Informatics** 



20 Nov, 2020