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Pearl’s Do-Calculus

e Do-calculus: Contains, as subsets:
- Back-door criterion
- Front-door criterion

e Allows analysis of more intricate structure beyond back- and front-door

e Uncovers all causal effects that can be identified from a given causal
graph

e Power of causal graphs is not just representation but actually
discovery of causal information
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Causal Discovery
(Generally Pearl)
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Learning causal relationships: Learn set of edges

e Causal axioms guide us in how a causal structure constrains
the possible types of probability distribution that can be
generated from that structure.

e Reverse: Obtain causal structures from probability distributions
via causal inference

e Types of constraints: Conditional independencies (all
parametric distributions), Vanishing determinants of partial
covariance matrices (linear Gaussian with unobserved
confounders), Unequal dependence on residuals (Non-linear
additive noise, or linear non-Gaussian), interventions/
perturbations, time-series ...



e
Causal Discovery Methods (Based on Graphical Models)

Short
comings
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e
Assumptions 1: The Markov Condition

Any variable X is independent of all other variables, conditional
on its parents (PA) and unobserved variables (noise):

J
P(x1,--ya,) = | | Plaj|PA;, ¢))
j=1

e Absent edge implies conditional independence (ClI)
e Observing conditional dependence implies an edge

For example: Yellow teeth, lung cancer, smoking

Yellow
teeth

An edge is wrongly inferred,
when parent is omitted

Yellow Lung
teeth cancer




Assumptions 3: Faithfulness

It fails when distributions are set up in such a way that paths
exactly cancel:

P=—aB+Up
T=BP+~vB+Ur

Pregnancy

=T =(—af+~v)B+U
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Assumptions 3: Faithfulness

It fails when distributions are set up in such a way that paths
exactly cancel:

P=—-—aB+Up
T=BP+~vB+Ur

Pregnancy

=T =(—af+~v)B+U

Soif ~ = a3, no dependency between T and B will be observed!

e Fails in regulatory systems, e.g. home temperature, outside
temp, thermostat: By design, thermostat keeps the inside temp
iIndependent of outside, always fixed at T*

e Biology and homeostasis!

Often keep the assumption and argue that most distributions are
multimodal and will not cancel each other exactly ...
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Distinguishing causal structures: V-structures
e Recall collider example:
Battery
Gas tank _|l Battery
Gas tank /| Battery | Car starts =0 @

e Markov Equivalence Class (MEC): Two graphs G and G’ belong
to the same equivalence class iff each conditional independence
implied by G is also implied by G’ and vice versa.

e We can learn edges/directions using MEC and d-separation.
e D-separations gives all Cl implied by graph



Markov Equivalence Class (MEC)

True DAG A—-B—C A—- B+ C
All Observed Cls Al C|B Al C|0
A—-B—C
Set of DAGs in MEC A+~ B+ (C A—-B<+(C
A+~ B —C
CPDAG R
(complete partially DAG) A B ClA=2B«C




e
The Search Space of Causal Graphs

e For |VI=n nodes there are (Z) — %(n — 1)n distinct pairs of variables

e There are at least 22 (?—1)n possible graphs where between any
two pairs there is either an edge or no edge.

e There are at most 3z (?—1)n possible graphs since we may have
eitherof: A—-B, A« B, A B

e (Grows super exponentially in the number of nodes

e Requires efficient causal discovery algorithms: PC algorithm



Peter-Clark (PC) Algorithm

True causal graph: °
I >(O—(0)

1. Start with the complete graph

0
E=0=0

2. Zeroth order Cl, A 1L B, by faithfulness:

See later for statistical °
independence tests. G C { D )




Peter-Clark (PC) Algorithm

3. 1st order Cl,

A
B

D
D

C | by faithfulness:
C

>—@

Glymour et al. (2019)



Peter-Clark (PC) Algorithm
3. 1storder Cl, A 1L D|C" by faithfulness:

B L D|C ©

4. No higher order Cl observed. Notice that conditioning sets only need to
contain neighbours for the two nodes due to the Markov condition. We do
not know the parents but parents are a subsets of neighbours. As the
graph becomes sparser, the number of tests to be performed decreases.
This makes PC very efficient.




Peter-Clark (PC) Algorithm

3. 1st order Cl,

A
B

D
D

C | by faithfulness:

C ©

4. No higher order Cl observed. Notice that conditioning sets only need to
contain neighbours for the two nodes due to the Markov condition. We do
not know the parents but parents are a subsets of neighbours. As the
graph becomes sparser, the number of tests to be performed decreases.
This makes PC very efficient.

5. Orient V-structures (colliders): take triplets where 2 nodes are
connected to the 3rd: A /I B|C' only.

° Note C < D cannot be as it would
° a have been a collider (not detected in 5)



.
Remarks

e Missing/unobserved variables could lead to wrong/biased graphs
e Conditional independence tests are subject of active research

e Parallelised PC

e PC for heterogeneous data etc.

Glymour et al. (2019)



Structural Causal Models (SCM)

An SCM consists of d structural assignments

Xj Z:fj(PAj,Nj) ] jzl,,d

Parents of X, i.e., direct causes of X;

Jointly independent noise variables

e Ni,...,N4 jointly independent
e G is acyclic

; ®
o e

Jonas Peters et al, Elements of Causal Inference (2017)




Intervention vs observation

e Consider the following causal model with structure equations:

Rapdom C := N¢ @ @
Variables FE:=4.-C+ Ng

where, No, N ~ N (0,1), are independent and iid.

Jonas Peters et al, Elements of Causal Inference (2017)
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e Consider the following causal model with structure equations:

Rapdom C = N¢ @ @
Variables L -— 4. C\_I: NE
where, N, N ~ N(0,1), are independent and iid. We expect'

e Apply do(C):
- The new distribution p(E|do(C)) # p(F)
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Intervention vs observation

e Consider the following causal model with structure equations:

Rapdom C = N¢ @ @
Variables L -— 4. C\_I: NE
where, No, Ng ~ N(0,1), are independent and iid. We expect:

e Apply do(C): ‘
- The new distribution p(E|do(C)) # p(F) G

- Since there are no other confounders: p(E‘dO( (E‘C

e Apply do(E):

- The new distribution P(C|do(E)) = p(C)
- Graph structure changes: p(Cldo(FE)) # p(C|E)




Intervention vs observation: Analytical computation

C .=
E::fLV-CC'—I—NE @ @

N, Ng ~ N(0,1), No 1L Ng

Using Var[aX] = a*Var[X], 4C ~ N(0, 16).
Using, 4C' 1l N , and the sum of two normally distributed random
variables is another normally distributed random variable (by convolution):

E ~N (pac + ping, 05c + o3,

= FE ~ N (0,17)
A fixed number @ G

p(E) =N (0,17) # N (8,1) = p(E|do(C = 2)) = p(E|C = 2)
7N (12,1) = p(E|do(C = 3)) = p(E|C = 3)



Intervention vs observation: Analytical computation
C .= NC
E:=4.C+ Ng @ @
N¢o,Ng ~N(0,1), No 1L Ng

p(Cldo(E =2)) =N (0,1) = p(Cldo(EZ = Any r > 0)) = p(C)

# p(C|E = 2) in the original distribution above

p(C, E
Proof: Use product rule: p(C|FE) = (G, E)
p(E)
For a bivariate normal distribution (2 joint normal distributions), the marginal:

-~ - oC -
p(C|E) = N(1,6%) s.t. uzuc+pE(E—uE), ¢ =0t (1-p7)



Intervention vs observation: Analytical computation

C .=
E::fLV-CC'—I—NE @ @

N, Ng ~ N(0,1), No 1L Ng

Proof (Cont.): Use Cov(aX,bY + c¢Z) = ab Cov(X,Y) + ac Cov(X, Z)

__COV“IZ?)__4COVUVC,A%0—FCbVQVC,A@ﬁ

OCOFE OCOFE

= p

S
\‘l

= D(CIE=2) =N (10? = 1) = p(Cldo(E)) £ p(CIE)



e
Next time

e Functional Causal Models (FCMs): Utilising asymmetry in data for causal
discovery

e LiINGAMs: Linear non-gaussian acyclic models, allow for new approaches
for causal learning from observational data

e ANM: Additive noise models and causal identifiablity

e |GCI: Information Geometric Causal Inference
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e
Convolution of probability distributions
Random C .= NC N07NE NN(O,l),NC J_LNE

Variables

E :=4.-C + (intercept =0) F Ng  ‘Residual’



Convolution of probability distributions
Random C .= NC N07NE NN(O,l),NC J_LNE

Variables

E:=4.C (intercept = U) NE ‘Residuals’

e C, E, Nc, Ng, are random variables and the above relation is NOT
an algebraic equation (in general)

e Linear operations on random variables in Structural Causal
Models (SCMs) can only be understood in terms of operations on
their corresponding probability distributions, e.g., forZ=X +Y:

Px.v(Z =2z2)= /PXY(:E, 2z — x)dx

e Key independence statements, ¥ || V
allow factorisation to the well-known convolution of probabilities:

Px. v (Z =2z) = /PX(w)Py(z — x)dx



