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e
Causal Discovery Methods (Based on Graphical Models)

Short
comings

Class of Algorithm| Name | Assumptions

Any distribution, No
unobsv. confounders,
PC (OldeSt) Markov cond, Causal info
_ faithfulness only up to Complete
Constraint-based — equivalence undirected
Asymatotically conect |, C1355€S graph
FCI with confounders, Non bivariate
Markov cond,
faithfulness
Empty graph,
No unobsuv. L
Score-based GES I Non-bivariate = adds edges,
removes some
Requires
: additional SOl
Functional Causal  LinGAm/ Asymmetry in data assumptions Equation
ANM (not general),
Models (FCMs) S EETET Model
discrete data




e
Constraint-based assumptions

e Markov condition:
- Absent edge implies conditional independence (Cl)
- Observing conditional dependence implies an edge

e Causal sufficiency: For any pair of variables X, Y, if there exists a
variable Z which is a direct of cause of both X and Y, then Z is included
in the causal graph (Z may be unobserved)

e Faithfulness:
- Conjugate to the Markov condition
- Edge implies conditional dependence
- Observing Cl implies absence of an edge

Could fail in regulatory systems, e.g., homeostasis.



Peter-Clark (PC) Algorithm

True causal graph: °
I >(O—(0)

1. Start with the complete graph

0
E=0=0

2. Zeroth order Cl, A 1L B, by faithfulness:

See later for statistical °
independence tests. G C { D )




Peter-Clark (PC) Algorithm

3. 1st order Cl,

A
B

D
D

C | by faithfulness:

C ©

4. No higher order Cl observed. Notice that conditioning sets only need to
contain neighbours for the two nodes due to the Markov condition. We do
not know the parents but parents are a subsets of neighbours. As the
graph becomes sparser, the number of tests to be performed decrease.
This makes CP very efficient.

5. Orient V-structures (colliders): take triplets where 2 nodes are
connected to the 3rd: A /I B|C' only.

° Note C — D cannot be as it would
° a have been a collider (not detected in 5)



L
Overview of the course

Causal Inference

Causal Effect Estimation Casual Discovery
Obsv confounders Unobsv confounders _
Constraint- Score- ECM
based based
Front-

Regression || Propensity

Adjustment score v door

criterion Modern ML

Rubin Rubin, Pearl *




.
Today’s lecture

e Functional Causal Models (FCMs): Utilising asymmetry in data
for causal discovery

e LiINGAMs: Linear non-gaussian acyclic models, allow for new
approaches for causal learning from observational data

e ANM: Additive noise models and
causal identifiablity

e |IGCI: Information Geometric Causal Inference

Jonas Peters et al, Elements of Causal Inference (2017)



N
Causal Structure Identifiability

e LINGAMs: Linear non-gaussian acyclic models, allow for new
approaches for causal learning from observational data.

e Focusing on 2 variables only, we wish to distinguish between:

T —>1Yory —x

from observational data.

e Assumption: The effect on E is a linear function of C up to additive
noise:

E =aC NE, NEJ_LC

These assumptions are not enough to identify cause/effect.



S
Theorem: Identifiability of LINGAMs

l.e., non-identifiability of gaussian Cause and Effect. If:

Y =aX + Ny, Ny 1L X
There exists a (§ and a random variable Nx s.t.:
X=08Y+Nx, Nx 1LY

if and only if X and )Ny are gaussians.

i.e., it is sufficient that for X (Y) or Ny (/N x) to be non-gaussian to
render the causal direction identifiable.



S
Theorem: Identifiability of LINGAMs

Proof:

@ Theorem (Darmois-Skitvic): Let x1,--- , 24 be independent,
non-degenerate random variable. If there exists non-vanishing
coefficients a1, -+ ,aq4 and by, --- , by such that the two

linear combinations:

i =a121 + -+ agxq
lo =bix1 + -+ + by

[1 1L [5 are independent, then each Z; is normally distributed
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@ Theorem (Darmois-Skitvic): Let x1,--- , x4 be independent,
non-degenerate random variable. If there exists non-vanishing
coefficients a1, -+ ,a4 and by, --- , by such that the two

linear combinations:
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@ Lemma (Peters 2008): Let X 1l N.Then N /I (X + N)



S
Theorem: Identifiability of LINGAMs

Proof:

@ Theorem (Darmois-Skitvic): Let x1,--- , x4 be independent,
non-degenerate random variable. If there exists non-vanishing
coefficients a1, -+ ,a4 and by, --- , by such that the two

linear combinations:

i =a121 + -+ agxq
lo =bix1 + -+ + by

[1 1L [5 are independent, then each Z; is normally distributed

@ Lemma (Peters 2008): Let X 1l N.Then N /I (X + N)

Ny 1 X
@Weprovethat Y=aX+ Ny =X=08Y+Nx, Nx 1LY
iff X Ny ~ N
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Proof:

@Weprovethatif X,Ny ~N and Y =aX + Ny,Ny 1L X
iX:BY—I—Nx, Nx 1LY
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Theorem: Identifiability of LINGAMs

Proof:

@Weprovethatif X,Ny ~N and Y =aX + Ny,Ny 1L X
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g — Cov|X,Y] aVar| X]
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XZﬁY—I—inNX:X—ﬁy



S
Theorem: Identifiability of LINGAMs

Proof:

@Weprovethatif X,Ny ~N and Y =aX + Ny,Ny 1L X
iX:BY—I—Nx, Nx 1LY

Define:
Cov|X,Y] aVar| X]

P = CovlY,Y] o2Var[X]+ Var[Ny]

XZﬁY—I—inNX:X—ﬁy

Cov|Nx,Y| =Cov|X — BY,Y]| =Cov| X,Y]| — BCov|Y,Y]
C’ov Y, Y
=CoulX, V" ( Cov] X Y >

=Cov[X,Y](1-8x 37"



Theorem: Identifiability of LINGAMs

Proof:

@Weprovethatif X,Ny ~N and Y =aX + Ny,Ny 1L X
iX:BY—I—Nx, Nx 1LY

Define:
- CovX,)Y] aVar| X]

B = CO”U[Y, Y] a2Vafr‘[X] + V&T[Ny] ‘>
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Then Ny, Y are uncorrelated by construction,



Theorem: Identifiability of LINGAMs

Proof:

@Weprovethatif X,Ny ~N and Y =aX + Ny,Ny 1L X
iX:BY—I—Nx, Nx 1LY

Define:
- CovX,)Y] aVar| X]

B = CO”U[Y, Y] a2Vafr‘[X] + V&T[Ny] ‘>

XZﬁY—I—inNX:X—ﬁy

Then Ny, Y are uncorrelated by construction,

Moreover, Y is gaussian as it is a convolution of 2 gaussians.
Therefore, N x Is also gaussian.

Hence, Ny, Y are uncorrelated & gaussian, i.e., independent.




Theorem: Identifiability of LINGAMs

Proof:

@ Y =aX + Ny, Ny 1L X é
We prove the reverse: If BY + Nx. Nx ILY
X, Ny ~N

Since Nx 1l Y, we have: Nx =X — 8(aX + Ny) = (1 —af)X — SNy
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Theorem: Identifiability of LINGAMs

Proof:

@ Y:&X——Ny, NyJ_LX
We prove the reverse: If X = BY + Ny, Ny LY i
X7 NY NN

Since Nx 1l Y, we have: Nx =X — 8(aX + Ny) = (1 —af)X — SNy

There are 3 cases:

) (1—af) £0 & §#0
Then, given Ny L Y, DS theorem implies X, Ny ~ N
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Theorem: Identifiability of LINGAMs

Proof:

@ Y:&X——Ny, NyJ_LX
We prove the reverse: If X = BY + Ny, Ny LY i
X7 NY NN

Since Nx 1l Y, we have: Nx =X — 8(aX + Ny) = (1 —af)X — SNy

There are 3 cases:
() (1—aB) £0& §#£0

Then, given Ny L Y, DS theorem implies X, Ny ~ N
(i) (1 —aB)#0& =0

Then,since Nx 1L Y ,and Nx = X,then X 1l aX + Ny
In contradiction with Peters’ lemma



S
Theorem: Identifiability of LINGAMs

Proof:

@ Y:&X——Ny, NyJ_LX
We prove the reverse: If X =BY + Ny, Ny LY i
Xa NY NN

Since Nx 1l Y, we have: Nx =X — 8(aX + Ny) = (1 —af)X — SNy

There are 3 cases:
(i) 1—aBf=0& B#0

Then,since Nx 1L Y,and Nx = —8Ny, Ny 1L aX + Ny
again in contradiction with Peters’ lemma

Jonas Peters et al, Elements of Causal Inference (2017)



Theorem: Identifiability of LINGAMs

Proof:

@ We prove the reverse: If
Xa NY ~ N

Y = aX + Ny,

X = BY -

_NX7

Ny 1L X

Nx 1LY i

Since Nx 1l Y, we have: Nx =X — 8(aX + Ny) = (1 —af)X — SNy

There are 3 cases:
(i) 1—aBf=0& B#0

Then,since Nx 1L Y,and Nx = —8Ny, Ny 1L aX + Ny
again in contradiction with Peters’ lemma

Jonas Peters et al, Elements of Causal Inference (2017)



Linear Additive Noise Models (ANMs)

ANM: The joint distribution Px y is said to admitan ANM for X — Y
if there exists a measurable function fy and a noise variable Ny s.t.

Y = fy(X) + Ny, Ny 1L X

For this model, using convolution of probabilities we have:

p(x,y) = pny (¥ — fy(z))px (x)

Similarly, if a backward model exists:

p(r,y) = pny (T — fx(y))py (¥)

Jonas Peters et al, Elements of Causal Inference (2017)



N
Theorem: Identifiability of ANMs

Let p(x,y) = pny (Y — fy(z))px (7)
if the backward model exists: p(:z:, y) = DNy (m — fX(y))PY(y)

It must satisfy the following condition:

Jonas Peters et al, Elements of Causal Inference (2017)



N
Theorem: Identifiability of ANMs

Let p(x,y) = pny (Y — fy(z))px (7)
if the backward model exists: p(:z:, y) = DNy (m — fX(y))PY(y)

It must satisfy the following condition: v (y — f,(z))f (z) # 0

111 7 I/”,f, f” o1 rorr ’ 117 I/, V/// f”f, V, f” -
5 — g < 7 | / ) — 2v f f + UV f f + V f - 7 o ( / )
v f v f

where UV = log(pNy)7 £ = 108;(]0)()

Jonas Peters et al, Elements of Causal Inference (2017)



Theorem: Identifiability of ANMs
Let p(z,y) = pny (Y — fy(2))px (7)
if the backward model exists: p(:z:, y) = DNy (m — fX(y))PY(y)

It must satisfy the following condition: v (y — f,(z))f (z) # 0

111 7 I/”, f, f” 11 rorr ’ 117 I// V/N f” f, V, f” -
‘S — g ( 7 | / ) — 2v f f + UV f f + V f - 7 o ( / )
v f v f

where UV = log(pNy)7 £ = 10%(]0)()

The set of all Px for which there is a backward model is contained
In a 3-dim space (small!)

Consider previous example: Gaussian, with f linear



Theorem: Identifiability of ANMs
Let p(z,y) = pny (Y — fy(2))px (7)
if the backward model exists: p(:z:, y) = DNy (m — fX(y))PY(y)

It must satisfy the following condition: v (y — f,(z))f (z) # 0

/17 7 I/”,f, f” 11 /1 /117 I// V/N f”f, V, (f”)2
‘S — g ( /7 I / ) o 2V f f —l_ 14 f f _I_ 14 f 'L /7 T /
% f % f

where UV = log(pNy)7 £ = 10%(]0)()

The set of all Px for which there is a backward model is contained in
a 3-dim space (small!)

Generically hard to satisfy, therefore forward model cannot be inverted



-
In practice

1. Regress Y on X

2. Test whetherY — fy IS .
independent of X Py it
3. Repeat, swapping X and Y s
4. If the independence is

: : P e T S AT o Eom
accepted for one direction and 27 yidneatuEels o 4K
| | b | ok IR AT
rejected for the other, infer the TS eXuATEAT | T *‘v,&:g*}b‘;
: : :, | .'&f.é L E R L \s'f}.:‘f.’%i" .
former as the causal direction, §S R Y oy
L 0 1 2 0 l
X Residuals of regr. X on Y

Statistical Test of Independence: Choose one that accounts for
higher order statistic rather than testing correlations only, e.g. HSIC

Jonas Peters et al, Elements of Causal Inference (2017)



-
In practice

| | library (dHSIC)

> | library (mgcv)

3 | #

4 | # generate data set

5 | set.seed(1)

6 |X <= rnorm(200)

7 |Y <= X°3 + rnorm(200) <
8 | #

9 | # fet models

10 | modelforw <- gam(Y ~ s(X))

'l |modelbackw <- gam(X ~ s(Y))

12 | #

13 | # wndependence tests

14 | dhsic.test(modelforw$residuals, X)$p.value

15 |# [1] 0.7628932

16 |dhsic.test(modelbackwdresiduals, Y)$p.value
17 |# [1] 0.004221031

18 | #

19 | # computing likelihoods
20 | = log(var(X)) - log(var(modelforw$residuals))
21 | # [1] 0.1420063

22 | = log(var(modelbackwdresiduals)) - log(var(Y))
23 | # [1] -1.014013

Gaussian noise

Jonas Peters et al, Elements of Causal Inference (2017)
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Information Geometric Causal Inference (IGCI)

Provide an idea of how ‘independence’ between p(E|C)and p(C)
can be formalised. How much information they contain about each
other.

Toy model: Oversimplified, deterministic (no noise)  Daniusis et al,, (2010)
If X — Yis a causal model, the distribution of X and the function f
mapping X to Y are ‘independent’ since they correspond to
independent mechanisms of nature.

Jonas Peters et al, Elements of Causal Inference (2017)
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Information Geometric Causal Inference (IGCI)

Toy model: Oversimplified, deterministic (no noise)

If X — Y'is a causal model, the distribution of X and the function f
mapping X to Y are ‘independent’ since they correspond to
iIndependent mechanisms of nature. Daniusis et al., (2010)

Example: Uniform density as input X.

Let Px(x) = 1 be the uniform density or [0,1] and f diffeomorphism
of [0,1] with f(0)=0 and f(1)=1 and inverse g := f_l. Then the
distribution of y = f(x) is: , 1

. py(y) =9 (Y) = 57—

e f'(f~1(y))

A

/()
i.e. when 7' (z) = 0 (flat regions), y has a peak.

» T

px(z) Jonas Peters et al, Elements of Causal Inference (2017)




Information Geometric Causal Inference (IGCI)

Independence of f and Px in terms of information geometry:

Cov[logf’(x>,p(x>] = / log f (z) - p(z) — 1ogf / 9(4

So if J and Px are independent:

Cov[log f (x)m(x)] =0= / log f (z) - p(z) = / log f ()

Jonas Peters et al, Elements of Causal Inference (2017)



Information Geometric Causal Inference (IGCI)

Independence of f and Px in terms of information geometry:

Cov[logf'(x),p(w)] = /logf'(fv) logf /%

So if J and Px are independent:

Cov[logf —O:>/logf /logf()

This will not hold for the opposite dlrectlon Using py (¥

Cov[logg(y),p(y)] /logg() logg //

= / (9 (y) — 1) log(g (y))
=Dk1(g |[v) + Dxr(vllg) >0  v=U(0,1) in [0,1]



.
Information Geometric Causal Inference (IGCI)

Previous results can be reformulated in information space Da“‘(”;gjoe)t al
X =Y
Cxoy = Drr(px||€Ex) — Drr(pyll€y) <0

Y — X
Cy_x = Dkr(py||fy) — Drr(px||€Ex) <0

Reference distributions

For non-zero C (if the function is not ‘too simple’), sign of C
determines the direction.

Jonas Peters et al, Elements of Causal Inference (2017)
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Information Geometric Causal Inference (IGCI)

Estimate C: Da"‘(‘gjo‘?t al.,
In case of uniform reference distribution: ,
pY(y) — pX(fL“)
Cxy = Dkr(px||u) — Drr(py||v) f'(z)

— [ px(@)togox(@)dz — [ py(u) ooy (0))dy

~ [ px(@) og(px (@) = [logtorctarrpx@ds + [ px(@)og(lf (@) de

—_—

_ / px () log(|f (x)])da

Which can be estimated from the data as:

1 m—1 Ui —
C ~ lo vl -
XY 1 ; g Tl — T

Jonas Peters et al, Elements of Causal Inference (2017)
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Gene Perturbation Experiments

e Method: Invariant Causal Prediction (ICP)

e Quantifies confidence probabilities for inferring causal structures, i.e.,
‘error bars’

e Uses data from different experimental conditions/perturbations, i.e.,
heterogeneous

* Mix of observational and interventional data Heterogeneity
Noise

G Y= Z Te Xk + €y Asymmetry
kes*

Main idea: Look for components of the regression vector that are
invariant among various experimental settings.




e
Invariant Causal Prediction (ICP): State-of-the-art

e Automatic identifiability
e Confidence bounds
e |ntervention/perturbation do not need to exactly specified

e Avoids typically unstable/complicated estimating with graphs
(equivalence classes from data)

Meinshausen et al. (2019)
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Overview of the course

e Estimating causal effects
e Randomised trial vs observational data
e Causal inference (of effects) [DoWhy and others]
- Rubin: Potential outcomes framework (observed confounders)
- Rubin (unobserved confounders)
- Simulations
- Pearl: Structural causal models framework (observed and
unobserved confounders)
- Simulations
e Causal discovery
- Constraint-based algorithms (PC)
- Functional Causal Models



L
Outcomes of the course

e Be able to find and follow papers that have developed causal techniques
e Understand which area of causal analysis the papers apply to
e Be able to apply causal techniques to a particular problem of interest

e Use causal analysis packages in R and Python (Microsoft DoWhy,
CausalGraphicalModels)

e Be able to modify a current technique in such a way that applies to a
particular problem of interest

e A foundation to start developing techniques in causal inference and
causal discovery
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